KLIFF: A framework to develop physics-based and machine learning interatomic potentials

نویسندگان

چکیده

Interatomic potentials (IPs) are reduced-order models for calculating the potential energy of a system atoms given their positions in space and species. IPs treat as classical particles without explicitly modeling electrons thus computationally far less expensive than first-principles methods, enabling molecular simulations significantly larger systems over longer times. Developing an IP is complex iterative process involving multiple steps: assembling training set, designing functional form, optimizing function parameters, testing model quality, deployment to simulation packages. This paper introduces KIM-based learning-integrated fitting framework (KLIFF), package that facilitates entire development process. KLIFF supports both physics-based machine learning IPs. It adopts modular approach whereby various components process, such atomic environment descriptors, forms, loss functions, optimizers, quality analyzers, so on, work seamlessly with each other. provides flexible rapid design new forms. Trained compatible Knowledgebase Models (KIM) application programming interface (API) can be readily used major materials packages KIM, including ASE, DL_POLY, GULP, LAMMPS, QC. written Python intensive implemented C++. parallelized data shared-memory multicore desktop machines high-performance distributed memory computing clusters. We demonstrate use by Stillinger--Weber neural network silicon. The package, together its documentation, publicly available at: https://github.com/openkim/kliff.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Learning methods for interatomic potentials: application to boron carbide

Total energies of crystal structures can be calculated to high precision using quantumbased density functional theory (DFT) methods, but the calculations can be time consuming and scale badly with system size. Boron carbide exhibits disorder in the distribution of boron and carbon atoms among the crystallographic sites. A cluster expansion of the DFT energy in a series of pairs, triplets, etc. ...

متن کامل

Research-Based Teaching and Learning within a Constructivist Framework: Designing a Phenomenologically-Based Model

  To explain the process of research-based methods of teaching and learning based on the professional knowledge of educational experts, and identify the benchmarks in using such a method, 25 academics at Farhangiyaan University and Ministry of Education were interviewed. The data were used to answer two basic questions: What characterizes research-based teaching and learning, and based on...

متن کامل

Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials

Density functional theory offers a very accurate way of computing materials properties from first principles. However, it is too expensive for modeling large-scale molecular systems whose properties are, in contrast, computed using interatomic potentials. The present paper considers, from a mathematical point of view, the problem of constructing interatomic potentials that approximate a given q...

متن کامل

‏‎a comparative study of language learning strategies employmed by bilinguals and monolinguals with reference to attitudes and motivation‎‏

هدف از این تحقیق بررسی برخی عوامل ادراکی واحساسی یعنی استفاده از شیوه های یادگیری زبان ، انگیزه ها ونگرش نسبت به زبان انگلیسی در رابطه با زمینه زبانی زبان آموزان می باشد. هدف بررسی این نکته بود که آیا اختلافی چشمگیر میان زبان آموزان دو زبانه و تک زبانه در میزان استفاده از شیوه های یادگیری زبان ، انگیزه ها نگرش و سطح مهارت زبانی وجود دارد. همچنین سعی شد تا بهترین و موثرترین عوامل پیش بینی کننده ...

15 صفحه اول

Accurate Interatomic Force Fields via Machine Learning with Covariant Kernels

Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Physics Communications

سال: 2022

ISSN: ['1879-2944', '0010-4655']

DOI: https://doi.org/10.1016/j.cpc.2021.108218